Package: vcmeta 1.4.0

vcmeta: Varying Coefficient Meta-Analysis

Implements functions for varying coefficient meta-analysis methods. These methods do not assume effect size homogeneity. Subgroup effect size comparisons, general linear effect size contrasts, and linear models of effect sizes based on varying coefficient methods can be used to describe effect size heterogeneity. Varying coefficient meta-analysis methods do not require the unrealistic assumptions of the traditional fixed-effect and random-effects meta-analysis methods. For details see: Statistical Methods for Psychologists, Volume 5, <https://dgbonett.sites.ucsc.edu/>.

Authors:Douglas G. Bonett [aut, cre], Robert J. Calin-Jageman [ctb]

vcmeta_1.4.0.tar.gz
vcmeta_1.4.0.zip(r-4.5)vcmeta_1.4.0.zip(r-4.4)vcmeta_1.4.0.zip(r-4.3)
vcmeta_1.4.0.tgz(r-4.4-any)vcmeta_1.4.0.tgz(r-4.3-any)
vcmeta_1.4.0.tar.gz(r-4.5-noble)vcmeta_1.4.0.tar.gz(r-4.4-noble)
vcmeta_1.4.0.tgz(r-4.4-emscripten)vcmeta_1.4.0.tgz(r-4.3-emscripten)
vcmeta.pdf |vcmeta.html
vcmeta/json (API)
NEWS

# Install 'vcmeta' in R:
install.packages('vcmeta', repos = c('https://dgbonett.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dgbonett/vcmeta/issues

On CRAN:

3.18 score 1 stars 8 scripts 201 downloads 106 exports 31 dependencies

Last updated 5 months agofrom:14e0aeea8d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-winOKNov 06 2024
R-4.5-linuxOKNov 06 2024
R-4.4-winOKNov 06 2024
R-4.4-macOKNov 06 2024
R-4.3-winOKNov 06 2024
R-4.3-macOKNov 06 2024

Exports:cor.from.tmeta.ave.agreemeta.ave.cormeta.ave.cor.genmeta.ave.cronbachmeta.ave.fishermeta.ave.genmeta.ave.gen.ccmeta.ave.gen.rcmeta.ave.mean.psmeta.ave.mean2meta.ave.meanratio.psmeta.ave.meanratio2meta.ave.oddsmeta.ave.pathmeta.ave.pbcormeta.ave.plotmeta.ave.prop.psmeta.ave.prop2meta.ave.propratio2meta.ave.semipartmeta.ave.slopemeta.ave.spearmeta.ave.stdmean.psmeta.ave.stdmean2meta.ave.varmeta.chitestmeta.lc.agreemeta.lc.genmeta.lc.mean.psmeta.lc.mean1meta.lc.mean2meta.lc.meanratio.psmeta.lc.meanratio2meta.lc.oddsmeta.lc.prop.psmeta.lc.prop1meta.lc.prop2meta.lc.propratio2meta.lc.stdmean.psmeta.lc.stdmean2meta.lm.agreemeta.lm.cormeta.lm.cor.genmeta.lm.cronbachmeta.lm.genmeta.lm.mean.psmeta.lm.mean1meta.lm.mean2meta.lm.meanratio.psmeta.lm.meanratio2meta.lm.oddsmeta.lm.prop.psmeta.lm.prop1meta.lm.prop2meta.lm.propratio2meta.lm.semipartmeta.lm.spearmeta.lm.stdmean.psmeta.lm.stdmean2meta.sub.cormeta.sub.cronbachmeta.sub.genmeta.sub.pbcormeta.sub.semipartmeta.sub.spearreplicate.correplicate.cor.genreplicate.genreplicate.mean.psreplicate.mean1replicate.mean2replicate.oddsratioreplicate.plotreplicate.prop.psreplicate.prop1replicate.prop2replicate.ratio.prop2replicate.slopereplicate.spearreplicate.stdmean.psreplicate.stdmean2se.ave.cor.nonoverse.ave.cor.overse.ave.mean2.depse.biphise.bscorse.cohense.corse.mean.psse.mean2se.meanratio.psse.meanratio2se.oddsse.pbcorse.prop.psse.prop2se.semipartialse.slopese.spearse.stdmean.psse.stdmean2se.tetrastdmean2.from.ttable.from.oddstable.from.phi

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSmathjaxrMatrixmgcvmunsellnlmepillarpkgconfigR6rbibutilsRColorBrewerRdpackrlangscalestibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Computes Pearson correlation between paired measurements from t statisticcor.from.t
Confidence interval for an average G-index agreement coefficientmeta.ave.agree
Confidence interval for an average Pearson or partial correlationmeta.ave.cor
Confidence interval for an average correlation of any typemeta.ave.cor.gen
Confidence interval for an average Cronbach alpha reliabilitymeta.ave.cronbach
Fisher confidence interval for an average correlation.meta.ave.fisher
Confidence interval for an average of any parametermeta.ave.gen
Confidence interval for an average effect size using a constant coefficient modelmeta.ave.gen.cc
Confidence interval for an average effect size using a random coefficient modelmeta.ave.gen.rc
Confidence interval for an average mean difference from paired-samples studiesmeta.ave.mean.ps
Confidence interval for an average mean difference from 2-group studiesmeta.ave.mean2
Confidence interval for an average mean ratio from paired-samples studiesmeta.ave.meanratio.ps
Confidence interval for an average mean ratio from 2-group studiesmeta.ave.meanratio2
Confidence interval for average odds ratio from 2-group studiesmeta.ave.odds
Confidence interval for an average slope coefficient in a general linear model or a path model.meta.ave.path
Confidence interval for an average point-biserial correlationmeta.ave.pbcor
Forest plot for average effect sizesmeta.ave.plot
Confidence interval for an average proportion difference in paired-samples studiesmeta.ave.prop.ps
Confidence interval for an average proportion difference in 2-group studiesmeta.ave.prop2
Confidence interval for an average proportion ratio from 2-group studiesmeta.ave.propratio2
Confidence interval for an average semipartial correlationmeta.ave.semipart
Confidence interval for an average slope coefficientmeta.ave.slope
Confidence interval for an average Spearman correlationmeta.ave.spear
Confidence interval for an average standardized mean difference from paired-samples studiesmeta.ave.stdmean.ps
Confidence interval for an average standardized mean difference from 2-group studiesmeta.ave.stdmean2
Confidence interval for an average variancemeta.ave.var
Computes a chi-square test of effect-size homogeneitymeta.chitest
Confidence interval for a linear contrast of G-index coefficientsmeta.lc.agree
Confidence interval for a linear contrast of effect sizesmeta.lc.gen
Confidence interval for a linear contrast of mean differences from paired-samples studiesmeta.lc.mean.ps
Confidence interval for a linear contrast of meansmeta.lc.mean1
Confidence interval for a linear contrast of mean differences from 2-group studiesmeta.lc.mean2
Confidence interval for a log-linear contrast of mean ratios from paired-samples studiesmeta.lc.meanratio.ps
Confidence interval for a log-linear contrast of mean ratios from 2-group studiesmeta.lc.meanratio2
Confidence interval for a log-linear contrast of odds ratiosmeta.lc.odds
Confidence interval for a linear contrast of proportion differences in paired-samples studiesmeta.lc.prop.ps
Confidence interval for a linear contrast of proportionsmeta.lc.prop1
Confidence interval for a linear contrast of proportion differences in 2-group studiesmeta.lc.prop2
Confidence interval for a log-linear contrast of proportion ratios from 2-group studiesmeta.lc.propratio2
Confidence interval for a linear contrast of standardized mean differences from paired-samples studiesmeta.lc.stdmean.ps
Confidence interval for a linear contrast of standardized mean differences from 2-group studiesmeta.lc.stdmean2
Meta-regression analysis for G agreement indicesmeta.lm.agree
Meta-regression analysis for Pearson or partial correlationsmeta.lm.cor
Meta-regression analysis for correlationsmeta.lm.cor.gen
Meta-regression analysis for Cronbach reliabilitiesmeta.lm.cronbach
Meta-regression analysis for any type of effect sizemeta.lm.gen
Meta-regression analysis for paired-samples mean differencesmeta.lm.mean.ps
Meta-regression analysis for 1-group meansmeta.lm.mean1
Meta-regression analysis for 2-group mean differencesmeta.lm.mean2
Meta-regression analysis for paired-samples log mean ratiosmeta.lm.meanratio.ps
Meta-regression analysis for 2-group log mean ratiosmeta.lm.meanratio2
Meta-regression analysis for odds ratiosmeta.lm.odds
Meta-regression analysis for paired-samples proportion differencesmeta.lm.prop.ps
Meta-regression analysis for 1-group proportionsmeta.lm.prop1
Meta-regression analysis for 2-group proportion differencesmeta.lm.prop2
Meta-regression analysis for proportion ratiosmeta.lm.propratio2
Meta-regression analysis for semipartial correlationsmeta.lm.semipart
Meta-regression analysis for Spearman correlationsmeta.lm.spear
Meta-regression analysis for paired-samples standardized mean differencesmeta.lm.stdmean.ps
Meta-regression analysis for 2-group standardized mean differencesmeta.lm.stdmean2
Confidence interval for a subgroup difference in average Pearson or partial correlationsmeta.sub.cor
Confidence interval for a subgroup difference in average Cronbach reliabilitiesmeta.sub.cronbach
Confidence interval for a subgroup difference in average effect sizemeta.sub.gen
Confidence interval for a subgroup difference in average point-biserial correlationsmeta.sub.pbcor
Confidence interval for a subgroup difference in average semipartial correlationsmeta.sub.semipart
Confidence interval for a subgroup difference in average Spearman correlationsmeta.sub.spear
Compares and combines Pearson or partial correlations in original and follow-up studiesreplicate.cor
Compares and combines any type of correlation in original and follow-up studiesreplicate.cor.gen
Compares and combines effect sizes in original and follow-up studiesreplicate.gen
Compares and combines paired-samples mean differences in original and follow-up studiesreplicate.mean.ps
Compares and combines single mean in original and follow-up studiesreplicate.mean1
Compares and combines 2-group mean differences in original and follow-up studiesreplicate.mean2
Compares and combines odds ratios in original and follow-up studiesreplicate.oddsratio
Plot to compare estimates from original and follow-up studiesreplicate.plot
Compares and combines paired-samples proportion differences in original and follow-up studiesreplicate.prop.ps
Compares and combines single proportion in original and follow-up studiesreplicate.prop1
Compares and combines 2-group proportion differences in original and follow-up studiesreplicate.prop2
Compares and combines 2-group proportion ratios in original and follow-up studiesreplicate.ratio.prop2
Compares and combines slope coefficients in original and follow-up studiesreplicate.slope
Compares and combines Spearman correlations in original and follow-up studiesreplicate.spear
Compares and combines paired-samples standardized mean differences in original and follow-up studiesreplicate.stdmean.ps
Compares and combines 2-group standardized mean differences in original and follow-up studiesreplicate.stdmean2
Computes the standard error for the average of two Pearson correlations with no variables in common that have been estimated from the same samplese.ave.cor.nonover
Computes the standard error for the average of two Pearson correlations with one variable in common that have been estimated from the same samplese.ave.cor.over
Computes the standard error for the average of 2-group mean differences from two parallel measurement response variables in the same samplese.ave.mean2.dep
Computes the standard error for a biserial-phi correlationse.biphi
Computes the standard error for a biserial correlationse.bscor
Computes the standard error for Cohen's dse.cohen
Computes the standard error for a Pearson or partial correlationse.cor
Computes the standard error for a paired-samples mean differencese.mean.ps
Computes the standard error for a 2-group mean differencese.mean2
Computes the standard error for a paired-samples log mean ratiose.meanratio.ps
Computes the standard error for a 2-group log mean ratiose.meanratio2
Computes the standard error for a log odds ratiose.odds
Computes the standard error for a point-biserial correlationse.pbcor
Computes the estimate and standard error for a paired-samples proportion differencese.prop.ps
Computes the estimate and standard error for a 2-group proportion differencese.prop2
Computes the standard error for a semipartial correlationse.semipartial
Computes a slope and standard errorse.slope
Computes the standard error for a Spearman correlationse.spear
Computes the standard error for a paired-samples standardized mean differencese.stdmean.ps
Computes the standard error for a 2-group standardized mean differencese.stdmean2
Computes the standard error for a tetrachoric correlation approximationse.tetra
Computes Cohen's d from pooled-variance t statisticstdmean2.from.t
Computes the cell frequencies in a 2x2 table using the marginal proportions and odds ratiotable.from.odds
Computes the cell frequencies in a 2x2 table using the marginal proportions and phi correlationtable.from.phi